Patterns of 1,748 Unique Human Alloimmune Responses Seen by Simple Machine Learning Algorithms.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Allele specific antibody response against the polymorphic system of HLA is the allogeneic response marker determining the immunological risk for graft acceptance before and after organ transplantation and therefore routinely studied during the patient's workup. Experimentally, bead bound antigen- antibody reactions are detected using a special multicolor flow cytometer (Luminex). Routinely for each sample, antibody responses against 96 different HLA antigen groups are measured simultaneously and a 96-dimensional immune response vector is created. Under a common experimental protocol, using unsupervised clustering algorithms, we analyzed these immune intensity vectors of anti HLA class II responses from a dataset of 1,748 patients before or after renal transplantation residing in a single country. Each patient contributes only one serum sample in the analysis. A population view of linear correlations of hierarchically ordered fluorescence intensities reveals patterns in human immune responses with striking similarities with the previously described CREGs but also brings new information on the antigenic properties of class II HLA molecules. The same analysis affirms that "public" anti-DP antigenic responses are not correlated to anti DR and anti DQ responses which tend to cluster together. Principal Component Analysis (PCA) projections also demonstrate ordering patterns clearly differentiating anti DP responses from anti DR and DQ on several orthogonal planes. We conclude that a computer vision of human alloresponse by use of several dimensionality reduction algorithms rediscovers proven patterns of immune reactivity without any a priori assumption and might prove helpful for a more accurate definition of public immunogenic antigenic structures of HLA molecules. Furthermore, the use of Eigen decomposition on the Immune Response generates new hypotheses that may guide the design of more effective patient monitoring tests. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Frontiers in Immunology is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)